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Abstract
It is shown that the generators of the Lie algebra so(2, 1) can be defined in terms
of annihilation and creation operators of infinite boson modes while an angular
momentum algebra can be introduced with finite boson modes. The so(2, 1)
algebraic structure is shown to exist in the quantized field in a vibrating cavity,
which considerably simplifies the studies on the system’s eigenvalue problem
and the dynamical evolution.

PACS numbers: 4250H, 0365F, 4250C, 4250D

1. Introduction

It is well known [1–5] that introducing an angular momentum algebra often simplifies
greatly the studies of the eigenvalue problem and dynamics of a system composed of
finite boson modes. Such examples are the two-mode description of quantum interference
of condensates [1], the three-mode description of two-photon Raman processes in a
microcavity [2] and of energy spectra and dynamics of a multi-component Bose–Einstein
condensate [3], as well as the description of four-wave mixing with matter waves [4]. Recently,
we have investigated two-photon Raman processes [5] and the general structure of Boson–
Einstein condensates [6] with arbitrary but finite boson modes by introducing an angular
momentum algebra. In all the above-mentioned examples, three introduced components Jα
(α = x, y, z) of an angular momentum J are expressed as a bilinear form of creation and
annihilation operators of the finite boson modes. These three components are obviously the
infinitesimal generators of the Lie group SO(3) (or SU(2)) [7] and hence describe the algebraic
structure of that group. Most recently, Coleman et al [8] have developed a supersymmetric
representation of spin operators which unifies the Schwinger and Abrikosov representations
of SU(N) spin operators, allowing a second-quantized treatment of representations of the
SU(N) group with both symmetric and antisymmetric character. At this time, it is natural to
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ask whether there exist other algebraic structures instead of the angular momentum algebraic
structure for a system having finite or infinite boson modes, which will be the subject of this
paper.

In this paper we shall show that an angular momentum algebra can always be introduced
for arbitrary but finite photon modes while infinite boson modes can result in a totally different
algebraic structure characterized by the three infinitesimal generators of the Lie algebra
so(2, 1). We shall discuss their applications to some physical systems, and pay much attention
to the problem of the quantized field in a one-dimensional vibrating cavity. It is shown that
the introduced algebraic structure of Lie algebra so(2, 1) for the quantized field in a vibrating
cavity greatly simplifies the corresponding eigenvalue problem and dynamical evolution of
the quantized field. This paper is organized as follows. In section 2, we outline the main
spirit of the angular momentum algebra introduced by bilinear combinations of the creation
and annihilation operators of finite boson modes, and briefly discuss its applications. In
section 3, we introduce the algebraic structure of Lie algebra so(2, 1) by defining its three
infinitesimal generators in terms of the creation and annihilation operators of infinite boson
modes. In section 4, we apply the results in section 3 to discussing the eigenvalue problem of
the quantized field in a vibrating cavity, and section 5 concludes the paper.

2. Angular momentum algebra for finite boson modes

Suppose there exist 2f + 1 boson modes where f is finite and can take any positive half-
integer value f = 1/2, 3/2, 5/2, . . . (even boson modes) and integers f = 1, 2, . . . (odd
boson modes). Introducing

J− = J †
+ =

f∑
j=−f

√
(f − j)(f + j + 1)a†

j aj+1 (1a)

Jz =
f∑

j=−f
ja

†
j aj J 2 = J−J+ + J 2

z + Jz (1b)

it is easily shown that they define an angular momentum J with its three components
Jx = (J+ + J−)/2, Jy = i(J− − J+)/2 (i.e. J± = Jx ± iJy) and Jz since

[J+, J−] = 2Jz [J±, Jz] = ∓J± (2a)

[Jα, Jβ] = iεαβγ Jγ α, β, γ = x, y, z. (2b)

Hence we have shown that for arbitrary but finite boson modes, we can always introduce an
angular momentum J in terms of creation and annihilation operators of the 2f + 1 boson
modes. Jz denotes its z-component, J− (J+) represents the corresponding lowering (raising)
operator and the Casimir operator J 2 is nothing but the squared angular momentum.

Before ending discussions of the angular momentum algebra for arbitrary but finite boson
modes, we emphasize that in the case of even boson modes, half-integer subscripts for the
creation and annihilation operators are introduced only for convenience so that we can describe
both even and odd modes in a united way. The notation of half-integer subscripts can be avoided
in the case of even modes by defining J− = J

†
+ = ∑n

j=−n
√
(n− j)(n + j + 1)a†

j aj+1 and Jz =∑n
j=−n(j−1/2)a†

j aj with a positive integer n so that all the subscripts j = 0,±1,±2, . . . ,±n
are integers now. Similarly minus subscripts can also be avoided by translating all of
them by a certain integer, e.x., defining J− = ∑2n+1

j=1

√
j (2n + 1 − j)a

†
j aj+1 and Jz =∑2n+1

j=1 (j−n−3/2)a†
j aj for even boson modes, as well as J− = ∑2f +1

j=1

√
j (2f + 1 − j)a

†
j aj+1

and Jz = ∑2f +1
j=1 (j − f − 1)a†

j aj for odd boson modes.
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Let us now mention some special previously studied situations of the general expression (1)
of the angular momentum in terms of creation and annihilation operators of arbitrary but finite
boson modes. Equation (1) for f = 1/2 is easily shown to give, except for different subscript
notation, the definitions of two angular momenta S1 and S2 introduced in [4] for investigating
four-wave mixing with matter waves. Obviously, equation (1) for f = 1 reduces to the
connection between field variables with an angular momentum for the three-mode description
of multi-component Bose–Einstein condensates [3]. Such a connection has been shown to
greatly simplify discussions of these problems [3,4]. As for its applications to cavity quantum
electrodynamics problems, let us mention the following quite general Hamiltonian [5]:

H = 1
2δωσz + ω̃N +�Jz + g(J−σ21 + J+σ12) (3)

where the meanings of the constants δ, ω̃, � and g are referred to [5]. This Hamiltonian
describes a series of multi-coupled-channel cavity QED models, for instance, the models in
the multi-� configuration with arbitrary (2f = 1, 2, 3, . . .) � channels, and can be easily
diagonalized [5]. For f = 1/2, this Hamiltonian, together with the angular momentum
definition (1), describes a two-wave system in either� or� configurations [9], and it becomes
a three-wave system describing two-photon Raman processes with a0 ≡ aP, a−1 ≡ aS and
a1 ≡ aA describing the pump, Stokes and anti-Stokes modes respectively [2].

3. so(2, 1) algebraic structure for infinite boson modes

In this case, we define three Hermitian operators Aα = A†
α (α = x, y, z) by the relations

Ax = 1
2

∞∑
j=1

√
j (j + 1)(a†

j aj+1 + a†
j+1aj ) (4a)

Ay = i

2

∞∑
j=1

√
j (j + 1)(a†

j aj+1 − a
†
j+1aj ) (4b)

Az =
∞∑
j=1

ja
†
j aj . (4c)

It is easily shown that

[Ax,Ay] = −iAz (5a)

[Ax,Az] = −iAy [Ay,Az] = iAx (5b)

[A+, A−] = −2Az [A±, Az] = ∓A± (6)

where A± = Ax ± iAy or

A− = A†
+ =

∞∑
j=1

√
j (j + 1)a†

j aj+1. (7)

Note that the summation upper limit ∞ in the definitions of equation (4) manifests that
infinite boson modes are needed to construct the Lie algebra so(2, 1). Obviously the
commutation relations (5) for the three operators Aα (α = x, y, z) are identical to those
for the three infinitesimal generators of the Lie algebra so(2, 1) [7] and hence describe the
algebraic structure of the Lie algebra so(2, 1). The corresponding Casimir in this case is
C = A2

z − (A2
x + A2

y) = A2
z − (A+A− + A−A+)/2, satisfying the relations

[C,Aα] = 0 α = x, y, z. (8)
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Utilizing the expressions ofA± andAz, and after some manipulations, we can put the Casimir
operator into the form

C =
∞∑

j,k=1

a
†
j

(
jka

†
kaj −

√
jk(j + 1)(k + 1)a†

k+1aj+1

)
ak. (9)

It is well known that there exist four different unitary irreducible representations for the Lie
algebra so(2, 1) in general [7]. However, only one irreducible representation corresponding
to the one having a lower bound with no upper bound [7] suits for the case considered here
due to the particular form of Az in equation (4c). Let us illustrate this point. Suppose |λ,m〉
denote the common eigenket of operators C and Az with eigenvalues λ and m respectively,
i.e. C|λ,m〉 = λ|λ,m〉 and Az|λ,m〉 = m|λ,m〉. From equation (4c), one realizes that the
minimum eigenvalue forAz is the total boson numberN , which is the eigenvalue of the operator
N = ∑∞

j=1 a
†
j aj (throughout this paper, we use the same symbol N to denote both the total

boson number operator and its eigenvalues for simplicity), and we therefore have the relation
A−|λ,m = N〉 = 0. Utilizing this relation and the relation A+A− = A2

z −Az −C, one easily
obtains λ = N(N − 1), i.e. the Casimir operator C can only take one value N(N − 1) for
a fixed total boson number. The above discussion explains the fact that only one irreducible
representation corresponding to the one having a lower bound with no upper bound suits for
our case, and the eigenvalues of the operator Az arem = N,N + 1, N + 2, . . . [7]. In addition
we can, by utilizing equation (5), easily obtain the useful transformation formula

exp(−iθAy)Az exp(iθAy) = Az cosh θ + Ax sinh θ. (10)

We have proved the conclusion that infinite boson modes can introduce an algebraic structure
of Lie algebra so(2, 1). It is emphasized that the commutation relations (5) for the operators
Aα differ from equation (2) for the three angular momentum components Jα (α = x, y, z) and
therefore the two operator sets (Jx, Jy, Jz) and (Ax,Ay,Az) describing the cases involving
finite and infinite boson modes respectively, represent different algebraic structures.

Before ending this section, it is pointed out that we can in fact introduce many independent
so(2, 1)Lie algebras from infinite boson modes (aj , a

†
j , j = 1, 2, 3, . . .). To see this, we define

B−(n, k) = B
†
+(n, k), B±(n, k) = Bx(n, k)± iBy(n, k) and

B−(n, k) =
∞∑
j=0

√(
j +

k

n

) (
j + 1 +

k

n

)
a

†
nj+kan(j+1)+k (11a)

Bz(n, k) =
∞∑
j=0

(
j +

k

n

)
a

†
nj+kanj+k (11b)

where n is a fixed positive integer, and k = 1, 2, . . . , n. Note that Aα ≡ Bα(n = 1, k = 1),
α = x, y, z,+,−. It is then easily shown that they satisfy the commutation relations,

[B+(n, k), B−(n, k)] = −2Bz(n, k) (12a)

[B±(n, k), Bz(n, k)] = ∓B±(n, k) (12b)

where B±(n, k) = Bx(n, k) ± iBy(n, k). Therefore three operators B(n, k) =
(Bx(n, k), By(n, k), Bz(n, k)) for fixed positive integers n and k give the three generators of
Lie algebra so(2, 1). The corresponding Casimir in this case is Cn,k = B2

z (n, k)− [B2
x (n, k)+

B2
y (n, k)], satisfying the relations

[Cn,k, Bα(n, k)] = 0 α = x, y, z. (13)
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The Casimir operator can be put into the form

Cn,k = k

2n

(
k

n
− 1

)
a

†
kak +

∞∑
j,m=0

gj,m(k/n)a
†
nj+ka

†
nm+kanj+kanm+k

−
∞∑

j,m=0

fj,m(k/n)a
†
nj+ka

†
n(m+1)+kan(j+1)+kanm+k (14)

where gj,m(k/n) = (j + k/n)(m + k/n) and fj,m(k/n) = √
gj,m(k/n)gj+1,m+1(k/n). It is

easily seen that the Casimir operator Cn,k for n = k = 1 is nothing but the Casimir operator
C in equation (9). Similarly we can derive the following useful transformation formulas:

exp(−iθBy(n, k))Bz(n, k) exp(iθBy(n, k)) = Bz(n, k) cosh θ + Bx(n, k) sinh θ (15)

where n is a fixed positive integer, and k = 1, 2, . . . , n. It is pointed out that operators
B(n, k) and operators B(n, k′) for k �= k′ are two setS of independent generators since
[Bα(n, k), Bβ(n, k′)] = 0 (α, β = x, y, z) if k �= k′.

4. so(2, 1) structure of the quantized field in a vibrating cavity

In this section, we apply the results in the last section to study the quantized field in a
one-dimensional cavity formed by two perfectly reflecting mirrors with one mirror fixed
at the position x = 0 and the other allowed to oscillate according to the relation x =
L exp[q0 cos(nωt/L]. Here ω = π/L is the fundamental eigenfrequency of the cavity with a
fixed length L, and n = 1, 2, . . . describe the nth harmonic resonance case where the moving
mirror oscillates with thenth unperturbed eigenfrequencynω [10,11]. Under the rotating-wave
approximation, the quantized field in such a vibrating cavity is shown [11] to be described by
the Hamiltonian H = H ′ +H(p) with H(p) denoting the parametric part and

H ′

�
=

∞∑
j=1

ja
†
j aj + ε

∞∑
j=1

√
j (j + n)(a†

j aj+n + a†
j+naj ) (16)

where � and ε are two constants [11], and positive integer n (= 1, 2, . . .) describes the
nth harmonic resonance case. We shall study the fundamental resonance case (n = 1) and
harmonic resonance cases (n � 2) separately, beginning with the former case.

The fundamental resonance case n = 1. In this case, the parametric part H(p) is
absent [11], so the total Hamiltonian H ≡ H ′. Utilizing equations (4) and (10), it is easy
to put the total Hamiltonian H into the form

H

�
= Az + 2εAx =

√
1 − (2ε)2 exp(−iθAy)Az exp(iθAy) (17)

where θ = tanh−1(2ε). Consequently, the total Hamiltonian H can be unitarily transformed
into the diagonal form

exp(iθAy)H exp(−iθAy) = �̄

∞∑
j=1

ja
†
j aj (18)

where �̄ = �
√

1 − (2ε)2. Therefore all the energy eigenvalues are of the form
�̄

∑∞
j=1 jnj corresponding to the energy eigenket exp(iθAy)|n1, n2, . . . , nj , . . .〉. Here

|n1, n2, . . . , nj , . . .〉 is the eigenket of photon number operators a†
j aj , j = 1, 2, . . . with

the eigenvalue nj (=0, 1, 2, . . .). It is seen that exploring the algebraic structure of Lie algebra
so(2, 1) for infinite photon modes provides us with a very simple method to diagonalize the
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Hamiltonian describing the quantized field in a vibrating cavity in the fundamental resonance
case. Apart from the relatively simple nature compared to the previous diagonalization method
developed in [11], the present method permits us to show easily from equations (8) and (17)
that the Casimir operator C in equation (9) is a conserved quantity since [H,C] = 0 and its
value is N(N − 1) according to the discussions given between equations (9) and (10). Here
N is the initial total photon number of the system. It is worthwhile to point out that such a
conserved quantity (the Casimir operator C) and its value seem to be hard to discover without
exploring the so(2, 1) algebraic structure of the quantized field in a vibrating cavity.

The harmonic resonance cases n � 2. In these cases, the parametric part H(p) is
nonzero [11]. However, once the Hamiltonian H ′ has been diagonalized, the diagonalization
of the total Hamiltonian in the presence of the parametric part can be treated with the help of
the method in [11]. We therefore focus on the diagonalization of the Hamiltonian H ′ in this
paper. The HamiltonianH ′ in equation (16) can expressed asH ′ = �

∑n
k=1H(n, k)with [11]

H(n, k) =
∞∑
j=0

(nj + k)a†
nj+kanj+k + ε

∞∑
j=0

√
(nj + k)(nj + n + k)(a†

nj+kan(j+1)+k + hc) (19)

where hc denotes Hermitian conjugation. It is seen from equations (11) and (15) that H(n, k)
can be put into a more concise form

H(n, k) = nBz(n, k) + 2nεBx(n, k) = n
√

1 − (2ε)2Uk(θ)Bz(n, k)U
†
k (θ) (20)

where the unitary operator Uk(θ) = exp(−iθBy(n, k)), and θ = tanh−1(2ε). Defining
a total unitary operator U(θ) = ∏n

k=1 Uk(θ), noting Uk(θ)Uk′(θ) = Uk′(θ)Uk(θ) (due
to [By(n, k), By(n, k′)] = 0) and U †(θ)H(n, k)U(θ) = U

†
k (θ)H(n, k)Uk(θ) (due to

H(n, k)Uk′(θ) = Uk′(θ)H(n, k) for k �= k′ because Uk′(θ) and H(n, k) for k �= k′ do not
share any common annihilation and creation operators of the photon modes), we then have

U †(θ)H ′U(θ) = �̄

n∑
k=1

nBz(n, k) = �̄

∞∑
j=1

ja
†
j aj (21)

where �̄ = �
√

1 − (2ε)2. Once again, it is seen that exploring the so(2, 1) algebraic structure
for infinite photon modes also provides us with a very simple method to diagonalize the
Hamiltonian describing the quantized field in a vibrating cavity in harmonic resonance cases in
the absence of the parametric partH(p). In dealing with the diagonalization of the Hamiltonian
H ′ in these cases, the present method is obviously much simpler than the previous method
also developed by us [11].

Let us present some further discussions related to the harmonic resonance cases. First of
all, it has been shown in the last section that, for infinite boson modes, we can introduce
the so(2, 1) algebraic structure in several different ways. However, one particular way
may not be helpful for the diagonalization of a specific model. For instance, the so(2, 1)
algebraic structure described by the generators Aj , j = x, y, z in equation (4) is very
useful in diagonalizing the Hamiltonian in the fundamental resonance case but is not so in
harmonic cases. In other words, for any specific model, one needs to sort out the most suitable
way to introduce the so(2, 1) algebraic structure. Secondly, if H ′ in equation (16) is the
total Hamiltonian for some systems, then the energy eigenvalues for such systems are of
the form �̄

∑∞
j=1 jnj corresponding to the energy eigenket U †(θ)|n1, n2, . . . , nj , . . .〉 with

U †(θ) = ∏n
k=1 exp(iθBy(n, k)) = exp[iθ

∑n
k=1 By(n, k)]. Here we have made use of the

property [By(n, k), By(n, k′)] = 0. Note that the expressions of energy eigenvalues and
eigenkets here are also suitable for the fundamental resonance case. Thirdly, for systems
whose total Hamiltonian is H ′ given by equation (16), it is easily seen from equations (13)
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and (20) that all the n Casimir operators Cn,k, k = 1, 2, . . . , n given by equation (14) are
commutative with H ′ and hence all of them are conserved quantities. In addition, it can be
shown by the similar arguments presented between equations (9) and (10) that each Casimir
operator Cn,k takes a fixed value N̄k(N̄k − 1) where N̄k = kNk/n and Nk = ∑∞

j=0 nnj+k is

the initial total photon number of all the photon modes a†
nj+kanj+k , j = 0, 1, 2, . . . . Again we

emphasize that these conserved quantities Cn,k, k = 1, 2, . . . , n and their values are hard to
discover without exploring the so(2, 1) algebraic structure. Finally, we point out that studies
of the dynamical evolution of such systems are simple matters since we have diagonalized
the corresponding Hamiltonian, and we therefore omit discussions on the dynamics of such
systems in this paper.

5. Conclusions

In summary, we have shown that an angular momentum algebra can always be introduced for
arbitrary but finite photon modes while infinite boson modes can result in a totally different
algebraic structure characterized by the three infinitesimal generators of Lie algebra so(2, 1).
We have shown that the introduced so(2, 1) algebraic structure for the quantized field in
a vibrating cavity greatly simplifies the corresponding eigenvalue problem and dynamical
evolution of the quantized field in a vibrating cavity. Besides, exploring algebraic structures
of systems composed of finite and infinite boson modes may be a powerful way in finding
systems’ conserved quantities just as the cases discussed in the last section. It is well known
that introducing an angular momentum algebra often greatly simplifies the studies of the
eigenvalue problem and dynamics of a system. Therefore it is our hope that the so(2, 1)
algebraic structure for infinite boson modes might also find wide applications to other systems
besides the system of the quantized field in a vibrating cavity discussed here. It is pointed
out that only the algebraic structure rather than the complete group SO(2, 1) is needed for the
purposes of this paper and therefore we have only mentioned Lie algebra so(2, 1) rather than
Lie group SO(2, 1) [12].
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